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Ruin probability for exponential claims

Theorem
Given the classical risk process, if claims 𝑋1, 𝑋2, … follow an exponential
distribution 𝐹(𝑥) = 1 − 𝑒−𝛼𝑥 for 𝑥 ⩾ 0,

𝜓(𝑢) = 𝜓(0) exp(−𝑅𝑢),

where 𝑅 = 𝛼 − 𝜆/𝑐 and 𝜓(0) = 𝜆/(𝛼𝑐).
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Example: exponential claims

Suppose 𝑋1, 𝑋2, … follow an exponential distribution 𝐹(𝑥) = 1 − 𝑒−𝛼𝑥

for 𝑥 ⩾ 0 and 𝑐 = (1 + 𝜃)𝜆𝑚1. What is 𝜓(𝑢)?
We have

𝜓(𝑢) = 𝜓(0) exp(−𝑅𝑢)

= 𝜆
𝛼𝑐 exp(−(𝛼 − 𝜆/𝑐)𝑢)

= 1
1 + 𝜃 exp (− 𝛼𝜃𝑢

1 + 𝜃) .

Hence, the ultimate ruin probability is independent of the Poisson
parameter 𝜆.
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Lundberg’s inequality
As in the discrete time risk model, an upper bound also exists for the
ultimate ruin probability in the classical risk model.
Theorem
Given the classical risk process, the ultimate ruin probability has an upper
bound given by

𝜓(𝑢) ⩽ exp(−𝑅𝑢),
where 𝑅 is the **adjustment coefficient** which is the unique positive
root of the equation below **

𝜆𝑀𝑋(𝑅) − 𝜆 − 𝑐𝑅 = 0.

**

If 𝑐 = (1 + 𝜃)𝜆𝑚1, the above equation reduces to
𝑀𝑋(𝑅) = 1 + (1 + 𝜃)𝑚1𝑅,

so that 𝑅 is independent of the Poisson parameter 𝜆.
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Additional comments

For large initial surplus 𝑢, the ultimate ruin probability is close to the
upper bound. Hence, we have the approximation

𝜓(𝑢) ≈ exp(−𝑅𝑢),

which is often used in actuarial literature.
Clearly, the upper bound exp(−𝑅𝑢) decreases as 𝑅 increases, where
exp(−𝑅𝑢) is used as an approximation of 𝜓(𝑢). Arguably, the
ultimate ruin probability 𝜓(𝑢) also decreases as 𝑅 increases.
By the second bullet point, we can regard the adjustment coefficient
𝑅 as a (reverse) measure of risk for insurers: The larger 𝑅 is, the less
risk insurers face.
𝑒−𝑅 can be regarded as the factor by which the ruin probability
decreases given a unit increase in the initial surplus.
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Proof of Lundberg’s inequality I

Let 𝜓𝑛(𝑢), 𝑛 = 1, 2, …, be the probability that ruin happens before
𝑛th claim.
Note that lim𝑛→∞ 𝜓𝑛(𝑢) = 𝜓(𝑢) and 𝜓𝑛(𝑢) increases as 𝑛 increases.
Hence it suffices to show 𝜓𝑛(𝑢) ⩽ exp(−𝑅𝑢) for all 𝑛 = 1, 2, ….
This is done by induction.
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Proof of Lundberg’s inequality II
Assuming that 𝜓𝑛(𝑢) ⩽ exp(−𝑅𝑢), we show that 𝜓𝑛+1(𝑢) ⩽ exp(−𝑅𝑢) holds.

𝜓𝑛+1(𝑢) = ∫
∞

0
𝜆 exp(−𝜆𝑡) ∫

∞

𝑢+𝑐𝑡
𝑓(𝑥)d𝑥d𝑡

+ ∫
∞

0
𝜆 exp(−𝜆𝑡) ∫

𝑢+𝑐𝑡

0
𝜓𝑛(𝑢 + 𝑐𝑡 − 𝑥)𝑓(𝑥)d𝑥d𝑡

⩽ ∫
∞

0
𝜆 exp(−𝜆𝑡) ∫

∞

𝑢+𝑐𝑡
𝑓(𝑥)d𝑥d𝑡

+ ∫
∞

0
𝜆 exp(−𝜆𝑡) ∫

𝑢+𝑐𝑡

0
exp(−𝑅(𝑢 + 𝑐𝑡 − 𝑥))𝑓(𝑥)d𝑥d𝑡

⩽ ∫
∞

0
𝜆 exp(−𝜆𝑡) ∫

∞

0
exp(−𝑅(𝑢 + 𝑐𝑡 − 𝑥))𝑓(𝑥)d𝑥d𝑡 = exp(−𝑅𝑢).

The last equality uses the fact that 𝜆𝑀𝑋(𝑅) = 𝜆 + 𝑐𝑅.
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Proof of Lundberg’s inequality III

The rest is to show 𝜓1(𝑢) ⩽ exp(−𝑅𝑢). We have

𝜓1(𝑢) = ∫
∞

0
𝜆𝑒−𝜆𝑡 ∫

∞

𝑢+𝑐𝑡
𝑓(𝑥)𝑑𝑥𝑑𝑡

⩽ ∫
∞

0
𝜆𝑒−𝜆𝑡 ∫

∞

𝑢+𝑐𝑡
𝑓(𝑥) exp(−𝑅(𝑢 + 𝑐𝑡 − 𝑥))𝑑𝑥𝑑𝑡

⩽ ∫
∞

0
𝜆𝑒−𝜆𝑡 ∫

∞

0
𝑓(𝑥) exp(−𝑅(𝑢 + 𝑐𝑡 − 𝑥))𝑑𝑥𝑑𝑡

= exp(−𝑅𝑢).

The proof is done.
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Uniqueness of the root I

To show 𝜆𝑀𝑋(𝑅) − 𝜆 − 𝑐𝑅 = 0 has a unique root, we need the
assumption that for some 𝛾 ⩽ ∞, 𝑀𝑋(𝑟) is finite for all 𝑟 < 𝛾 and
lim𝑟→𝛾 𝑀𝑋(𝑟) = ∞.

Define
𝑔(𝑟) = 𝜆𝑀𝑋(𝑟) − 𝜆 − 𝑐𝑟.

Note that 𝑔(0) = 0. We first show lim𝑟→𝛾 𝑔(𝑟) = ∞.

For 𝛾 < ∞, it is obvious.
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Uniqueness of the root II

For 𝛾 = ∞, note there exists 𝜖 > 0 such that

𝑀𝑋(𝑟) = ∫
∞

0
𝑒𝑟𝑥𝑓(𝑥)d𝑥 ⩾ ∫

∞

𝜖
𝑒𝑟𝑥𝑓(𝑥)d𝑥

⩾ ∫
∞

𝜖
𝑒𝑟𝜖𝑓(𝑥)d𝑥 = 𝑒𝑟𝜖𝑃(𝑋 ⩾ 𝜖).

Hence,
lim
𝑟→𝛾

𝑔(𝑟) ⩾ lim
𝑟→𝛾

(𝜆𝑒𝑟𝜖𝑃(𝑋 ⩾ 𝜖) − 𝜆 − 𝑐𝑟) = ∞
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Uniqueness of the root III

Take derivatives of 𝑔(𝑟). We get

d
d𝑟𝑔(𝑟) = 𝜆 d

d𝑟𝑀𝑋(𝑟) − 𝑐.

Hence,
d
d𝑟𝑔(𝑟)|𝑟=0 = 𝜆𝑚1 − 𝑐 < 0.

Also
d2

d𝑟2 𝑔(𝑟) = 𝜆 d2

d𝑟2 𝑀𝑋(𝑟) > 0.

Consequently, 𝑔(𝑟) is a convex function with 𝑔(0) = 0 and
lim𝑟→𝛾 𝑔(𝑟) = ∞. The desired result is obtained.
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Example: exponential losses I

If the individual claims follow the exponential distribution
𝐹(𝑥) = 1 − exp(−𝛼𝑥) for 𝑥 ⩾ 0, then 𝑀𝑋(𝑟) = 𝛼/(𝛼 − 𝑟) for 𝑟 < 𝛼.
Hence, we need to solve

𝜆𝑀𝑋(𝑅) = 𝜆 𝛼
𝛼 − 𝑅 = 𝜆 + 𝑐𝑅,

which is equivalent to

𝑐𝑅2 + (𝜆 − 𝛼𝑐)𝑅 = 0.

Hence, 𝑅 = 𝛼 − 𝜆/𝑐.
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Example: exponential losses II

If we write 𝑐 = (1 + 𝜃)𝜆𝑚1 = (1 + 𝜃)𝜆/𝛼, we have

𝑅 = 𝛼 − 𝜆
𝑐 = 𝜃𝛼

1 + 𝜃.

Since
d𝑅
d𝜃 = 𝛼

(1 + 𝜃2) > 0,

We can see that as 𝜃 increases, 𝑅 increases, and essentially
exp(−𝑅𝑢) decreases which is the upper bound of 𝜓(𝑢).
That makes sense as we are charging more premium at a higher 𝜃.
We obtained an explicit solution in the above example. In most cases,
however, 𝑅 can only be solved numerically.

Yuyu Chen (Department of Economics, University of Melbourne)M11 Ruin probability and reinsurance 2024 14 / 46



Example: mixtures of exponential distributions I

If the individual claims follow the distribution

𝐹(𝑥) = 1 − 0.5(exp(−3𝑥) + exp(−7𝑥)),

for 𝑥 ⩾ 0, find 𝑅 when 𝜆 = 3 and 𝑐 = 1.
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Example: mixtures of exponential distributions II

The moment generating function of individual claim is

𝑀𝑋(𝑟) = 0.5 ( 3
3 − 𝑟 + 7

7 − 𝑟) .

Note that 𝑀𝑋(𝑟) exists for 𝑟 < 3.Hence, by 𝜆 + 𝑐𝑅 = 𝜆𝑀𝑋(𝑅), we get

𝑅3 − 7𝑅2 + 6𝑅 = 𝑅(𝑅 − 1)(𝑅 − 6) = 0,

which gives 𝑅 = 1.
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An upper bound of adjustment coefficient

Proposition
In the classical risk process model, we have

𝑅 < 2(𝑐 − 𝜆𝑚1)
𝜆𝑚2

.

If 𝑅 is small, this upper bound can a good approximation of 𝑅.
If 𝑐 = (1 + 𝜃)𝜆𝑚1, we get 𝑅 < 2𝜃𝑚1/𝑚2.
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An upper bound of adjustment coefficient: proof

We have
exp(𝑥) = 1 + 𝑥 + 𝑥2

2 + 𝑜(𝑥) > 1 + 𝑥 + 𝑥2

2 .

Hence we have

𝜆 + 𝑐𝑅 = 𝜆𝑀𝑋(𝑅) = 𝜆𝔼(exp(𝑅𝑋))

= 𝜆𝔼 (1 + 𝑅𝑋 + (𝑅𝑋)2

2 + 𝑜(𝑅𝑋))

> 𝜆𝔼 (1 + 𝑅𝑋 + (𝑅𝑋)2

2 ) = 𝜆 (1 + 𝑅𝑚1 + 𝑅2

2 𝑚2) .

Solving the above inequality, we get the desired result.
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Example: mixtures of exponential distributions (upper
bound of 𝑅)
If the individual claims follow the exponential distribution
𝐹(𝑥) = 1 − 0.5(exp(−3𝑥) − exp(−7𝑥)) for 𝑥 ⩾ 0, we have seen that
𝑅 = 1 when 𝜆 = 3 and 𝑐 = 1.

We have
𝑚1 = 0.5 (1

3 + 1
7) = 5

21,

and
𝑚2 = 0.5 ( 2

32 + 2
72 ) = 58

441,

The upper bound is

𝑅 < 2(𝑐 − 𝜆𝑚1)
𝜆𝑚2

= 1.45,

which is not close to the true value.
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A lower bound of adjustment coefficient

Proposition
In the classical risk process model, if 𝑋𝑖 ⩽ 𝑀 where 𝑀 > 0, we have

𝑅 > 1
𝑀 log ( 𝑐

𝜆𝑚1
) .

Hence if each individual claim has an upper bound, we can also derive a
lower bound for 𝑅.
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A lower bound of adjustment coefficient: proof

Assume that 𝑋 ⩽ 𝑀 where 𝑀 > 0. We first show for 0 ⩽ 𝑥 ⩽ 𝑀 :

exp(𝑅𝑥) ⩽ 𝑥
𝑀 exp(𝑅𝑀) + 1 − 𝑥

𝑀 .

We have

𝑥
𝑀 exp(𝑅𝑀) + 1 − 𝑥

𝑀 = 𝑥
𝑀

∞
∑
𝑗=0

(𝑅𝑀)𝑗

𝑗! + 1 − 𝑥
𝑀

= 1 +
∞

∑
𝑗=1

𝑅𝑗𝑀 𝑗−1𝑥
𝑗!

⩾ 1 +
∞

∑
𝑗=1

(𝑅𝑥)𝑗

𝑗! = exp(𝑅𝑥).
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A lower bound of adjustment coefficient: proof
We have

𝜆 + 𝑐𝑅 = 𝜆𝑀𝑋(𝑅) = 𝜆 ∫
∞

0
exp(𝑅𝑥)𝑓(𝑥)d𝑥

⩽ 𝜆 ∫
∞

0
( 𝑥

𝑀 exp(𝑅𝑀) + 1 − 𝑥
𝑀 ) 𝑓(𝑥)d𝑥

= 𝜆
𝑀 exp(𝑅𝑀)𝑚1 + 𝜆 − 𝜆

𝑀 𝑚1.

Then
𝑐

𝜆𝑚1
⩽ 1

𝑅𝑀 (exp(𝑅𝑀) − 1) = 1 + 𝑅𝑀
2! + (𝑅𝑀)2

3! + …

⩽ 1 + 𝑅𝑀
1! + (𝑅𝑀)2

2! + ⋯ = exp(𝑅𝑀).

Hence
𝑅 > 1

𝑀 log ( 𝑐
𝜆𝑚1

) .
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Ruin probabilities

Recall that in the classical risk process, continuous-time ruin probabilities
are defined as

𝜓(𝑢) = 𝑃(𝑇 < ∞),
and

𝜓(𝑢, 𝑡) = 𝑃 (𝑇 < 𝑡).
where 𝑇 = min{𝑡 > 0 ∶ 𝑈(𝑡) < 0} is the first time of ruin.
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Ruin probabilities against 𝑡

For 0 < 𝑡1 ⩽ 𝑡2 < ∞, and 𝑢 ⩾ 0,

𝜓(𝑢, 𝑡1) ⩽ 𝜓(𝑢, 𝑡2) ⩽ 𝜓(𝑢).

This is clear as

{𝑇 < 𝑡1} ⊆ {𝑇 < 𝑡2} ⊆ {𝑇 < ∞}.

Hence 𝜓(𝑢, 𝑡) is an increasing function of 𝑡.
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Ruin probabilities against 𝑢

For 0 ⩽ 𝑢1 ⩽ 𝑢2,
𝜓(𝑢1) ⩾ 𝜓(𝑢2).

This is because

𝜓(𝑢) = ℙ(𝑢 + 𝑐𝑡 − 𝑆(𝑡) < 0 for some 𝑡 > 0)

and that

{𝑢2+𝑐𝑡−𝑆(𝑡) < 0 for some 𝑡 > 0} ⊆ {𝑢1+𝑐𝑡−𝑆(𝑡) < 0 for some 𝑡 > 0}

Hence, 𝜓(𝑢) is a decreasing function of 𝑢. Similarly, we have

𝜓(𝑢1, 𝑡) ⩾ 𝜓(𝑢2, 𝑡).
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Ruin probabilities against 𝜃

Probabilities 𝜓(𝑢) and 𝜓(𝑢, 𝑡) are both decreasing against 𝜃.
This is intuitively true as a larger 𝜃 means more premium income.
One can also prove this result using similar arguments for the previous
result regarding ruin probabilities against 𝑢.
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Decision models

Recall that for an agent/decision maker with utility function 𝑢 and
wealth random variable 𝑋, the agent’s goal is to maximize 𝔼(𝑢(𝑋)).
The agent is risk-averse if its utility function is increasing and
concave.
Risk aversion means: (a) the more wealth the better

(b) the marginal utility is decreasing.

We will study how reinsurance can affect an insurer’s decision making,
i.e., how to make the optimal decision in the presence of reinsurance.
One can also use risk measures like VaR to measure the agent’s risk
(although not covered in this subject).
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Reinsurance

Insurers pay premiums to reinsurers to transfer part of their losses.
Reinsurance reduces the variability of the aggregate claims so that the
probability of ruin can be reduced.
A reinsurance contract is said to be optimal if the insurer’s utility is
maximized or the probability of ruin is minimized.
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Two types of reinsurance: proportion reinsurance

Proportion reinsurance: the reinsurer covers a prespecified proportion of
each risk in the portfolio and the reinsurance premium is in proportion to
the risk ceded.

If the insurer has a retained proportion 𝛼, then when a loss 𝑋 occurs,
the insurer will need to pay 𝛼𝑋 and the reinsurer will pay (1 − 𝛼)𝑋.
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Two types of reinsurance: excess of loss reinsurance

Excess of loss reinsurance: the reinsurer pays the claim which is beyond
a prespecified limit. In other words, the insurer’s liability is capped. The
cap is referred to as the retention of the insurer.

If the insurer has a retention limit 𝑀 , then when a loss 𝑋 occurs, the
insurer will need to pay min(𝑋, 𝑀) and the reinsurer will pay
max(𝑋 − 𝑀, 0).
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Application of utility theory I

Throughout this section, we make the following assumptions:

The insurer uses the exponential utility function:

𝑢(𝑥) = − exp(−𝛽𝑥),

where 𝛽 > 0. This implies that the insurer is risk-averse.
The insurer’s claim number follows a Poisson distribution with
Poisson parameter 𝜆 and the individual claim distribution is 𝐹 with
density 𝑓 and 𝐹(0) = 0. This means that the aggregate claim follows
a compound Poisson distribution.
Note that this is not the classical risk model.
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Application of utility theory II

Suppose that the insurer with policies is considering buying reinsurance.
The insurer has wealth at the end of a period:

𝑊𝐼 = 𝑊 + 𝑃 − 𝑃𝑅 − 𝑆𝐼 ,

where

𝑊 is the insurer’s wealth at the start of the period
𝑃 is the premium the insurer receives to cover the risk
𝑃𝑅 is the amount of the reinsurance premium
𝑆𝐼 denotes the amount of claims paid by the insurer net of reinsurance
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Application of utility theory III

The goal is to maximize the expected utility of the insurer:

max 𝔼[𝑢(𝑊𝐼)] = max 𝔼[𝑢(𝑊 + 𝑃 − 𝑃𝑅 − 𝑆𝐼)]
= max exp(−𝛽(𝑊 + 𝑃))(− exp(𝛽𝑃𝑅))𝔼[exp(𝛽𝑆𝐼)].

Since 𝑊 and 𝑃 are constant, the above problem is equivalent to:

max(− exp(𝛽𝑃𝑅))𝔼[exp(𝛽𝑆𝐼)].

We need to decide 𝑃𝑅 and 𝑆𝐼 such that the above expression can be
maximized.
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Two premium principles
The expected value principle sets the premium of a claim 𝑋 as

𝑃𝑋 = (1 + 𝜃)𝔼[𝑋],

where 𝜃 > 0 is the premium loading factor.
For a utility function 𝑢 and an insurer with initial wealth 𝑊 , premium
𝑃𝑋 and a claim 𝑋, the principle of Zero utility sets the premium by
the following equality:

𝑢(𝑊) = 𝔼[𝑢(𝑊 + 𝑃𝑋 − 𝑋)].

In the case of exponential utility 𝑢(𝑥) = − exp(−𝛽𝑥) (called the
exponential principle), we have

𝑃𝑋 = log 𝔼[exp(𝛽𝑋)]
𝛽 = log 𝑀𝑋(𝛽)

𝛽 .
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Application of utility: proportional reinsurance I

Assumes the reinsurer covers 1 − 𝛼 of each claim and the reinsurance
premium is calculated by the exponential principle with parameter 𝐴.

The reinsurance premium is thus

𝑃𝑅 = 𝜆
𝐴 (∫

∞

0
𝑒(1−𝛼)𝐴𝑥𝑓(𝑥)𝑑𝑥 − 1) ,

and
𝔼[exp(𝛽𝑆𝐼)] = exp (𝜆 (∫

∞

0
𝑒𝛼𝛽𝑥𝑓(𝑥)𝑑𝑥 − 1)) .
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Application of utility: proportional reinsurance II

Therefore, we are to maximize

− exp(𝛽𝑃𝑅)𝔼[exp(𝛽𝑆𝐼)]

= − exp (𝜆𝛽
𝐴 (∫

∞

0
𝑒(1−𝛼)𝐴𝑥𝑓(𝑥)𝑑𝑥 − 1) + 𝜆 (∫

∞

0
𝑒𝛼𝛽𝑥𝑓(𝑥)𝑑𝑥 − 1)) ,

which is equivalent to minimize

ℎ(𝛼) = 𝜆𝛽
𝐴 ∫

∞

0
𝑒(1−𝛼)𝐴𝑥𝑓(𝑥)𝑑𝑥 + 𝜆 ∫

∞

0
𝑒𝛼𝛽𝑥𝑓(𝑥)𝑑𝑥

= 𝜆 ∫
∞

0
(𝐴−1𝛽𝑒(1−𝛼)𝐴𝑥 + 𝑒𝛼𝛽𝑥) 𝑓(𝑥)𝑑𝑥.
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Application of utility: proportional reinsurance III

Taking derivatives of ℎ(𝛼), we get

𝑑
𝑑𝛼ℎ(𝛼) = 𝜆 ∫

∞

0
(−𝑥𝛽𝑒(1−𝛼)𝐴𝑥 + 𝛽𝑥𝑒𝛼𝛽𝑥) 𝑓(𝑥)𝑑𝑥,

and

𝑑2

𝑑𝛼2 ℎ(𝛼) = 𝜆 ∫
∞

0
(𝐴𝑥2𝛽𝑒(1−𝛼)𝐴𝑥 + 𝛽2𝑥2𝑒𝛼𝛽𝑥) 𝑓(𝑥)𝑑𝑥 > 0.

Hence, ℎ(𝛼) has a minimum at 𝛼 = 𝐴/(𝐴 + 𝛽).
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Application of utility: excess of loss reinsurance I

Let us now assume that the insurer effects excess of loss reinsurance with
retention level 𝑀 and that the reinsurance premium is calculated by the
expected value principle with loading 𝜃. The reinsurance premium is thus

𝑃𝑅 = (1 + 𝜃)𝜆 ∫
∞

𝑀
(𝑥 − 𝑀)𝑓(𝑥)𝑑𝑥,

and that

𝐸[exp(𝛽𝑆𝐼)] = exp (𝜆 (∫
𝑀

0
𝑒𝛽𝑥𝑓(𝑥)𝑑𝑥 + 𝑒𝛽𝑀(1 − 𝐹(𝑀)) − 1)) .
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Application of utility: excess of loss reinsurance II
We are to maximize

− exp(𝛽𝑃𝑅)𝔼[exp(𝛽𝑆𝐼)].

Equivalently, we are to minimize

𝑔(𝑀) = (1+𝜃)𝜆𝛽 ∫
∞

𝑀
(𝑥−𝑀)𝑓(𝑥)𝑑𝑥+𝜆 (∫

𝑀

0
𝑒𝛽𝑥𝑓(𝑥)𝑑𝑥 + 𝑒𝛽𝑀(1 − 𝐹(𝑀))) .

Taking derivatives of 𝑔(𝑀), we have

𝑑
𝑑𝑀 𝑔(𝑀) = (1 + 𝜃)𝜆𝛽(𝐹(𝑀) − 1) + 𝜆𝛽𝑒𝛽𝑀(1 − 𝐹(𝑀))

= 𝜆𝛽(1 − 𝐹(𝑀))(𝑒𝛽𝑀 − 1 − 𝜃),

which equals to 0 when 𝑀 = log(1 + 𝜃)/𝛽. Since the second derivative of 𝑔(𝑀)
is positive at log(1 + 𝜃)/𝛽, we found the minimum of 𝑔(𝑀).

Yuyu Chen (Department of Economics, University of Melbourne)M11 Ruin probability and reinsurance 2024 41 / 46



Example: excess of loss reinsurance

Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter 100, and individual claim amounts are exponentially
distributed with mean 100. The insurer of this risk decides to effect excess
of loss reinsurance, and the reinsurance premium is calculated according to
the variance principle with parameter 0.5 (i.e., for a random loss 𝑋, the
premium is 𝔼(𝑋) + 0.5Var(𝑋)). Find the retention level that maximizes
the insurer’s expected utility of wealth with respect to the utility function
𝑢(𝑥) = − exp(−0.005𝑥).
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Example: excess of loss reinsurance

Let 𝑋𝑖 be the 𝑖th claim after reinsurance.
Let 𝑌1, 𝑌2, … be the losses of the reinsurer.
We want to maximize 𝔼(𝑢(𝑊 + 𝑃 − 𝑃𝑅 − ∑𝑁

𝑖=1 𝑋𝑖)).
Essentially, we need to maximize

𝔼 (𝑢 (−𝑃𝑅 −
𝑁

∑
𝑖=1

𝑋𝑖)) = − exp(𝛽𝑃𝑅)𝔼 (exp (𝛽
𝑁

∑
𝑖=1

𝑋𝑖)) .
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Example: excess of loss reinsurance
We have

𝑃𝑅 = 𝔼 (
𝑁

∑
𝑖=1

𝑌𝑖) + 0.5Var (
𝑁

∑
𝑖=1

𝑌𝑖)

= 100𝔼(𝑌𝑖) + 0.5 ∗ 100 ∗ 𝔼(𝑌 2
𝑖 ).

Denote by 𝑀 the retention level. We have

𝔼(𝑌𝑖) = 100𝑒−0.01𝑀 ,

and
𝔼(𝑌 2

𝑖 ) = 20000𝑒−0.01𝑀 .
Then

𝑃𝑅 = 1010000𝑒−0.01𝑀 .

Yuyu Chen (Department of Economics, University of Melbourne)M11 Ruin probability and reinsurance 2024 44 / 46



Example: excess of loss reinsurance

In this question, 𝛽 = 0.005. Then

𝔼 (exp (𝛽
𝑁

∑
𝑖=1

𝑋𝑖)) = exp(100(1 − 𝑒−0.005𝑀)).
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Example: excess of loss reinsurance

We are then to maximize

− exp(𝛽𝑃𝑅)𝔼(exp(𝛽
𝑁

∑
𝑖=1

𝑋𝑖)) = − exp(𝛽1010000𝑒−0.01𝑀+100(1−𝑒−0.005𝑀)).

Let
ℎ(𝑀) = 5050𝑒−0.01𝑀 + 100(1 − 𝑒−0.005𝑀).

Then
ℎ′(𝑀) = −50.5𝑒−0.01𝑀 + 0.5𝑒−0.005𝑀 .

The optimal retention level is

𝑀 = 200(log 101).

Second derivative is positive at this point.
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